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ABSTRACT

The question of convergence §f three finite element algorithms for
the modelling of acoustic transmission in ducts carrying a nonuniform
mean flow is addressed. The details of each algorithm are stated and
example calculations in uniform and nonuniform ducts are made and assessed
for accuracy and convergence.

The algorithm based on the assumption of irrotationality is found to
be highly convergeﬁt. This algorithm is the one used in current turbo-fan
inlet acoustic radiation codes. A theoretical analysis indicating con-
vergence is supported by example calculations.

Two additional algorithms which do not require irrotationality are
found to be less convergent, and perhaps not convergent at all for certain
severely sheared velocity profiles. No theoretical convergence criteria
can presently be established for these algorithms and convergence difficul-
ties are shown here by example. Included in this class of algorithms is
the duct analysis program ADAM which is known to display apparently non-

convergent solutions in certain cases.



I. INTRODUCTION

It has become apparent that the several finite element approximations
used in the modelling of acoustic propagation in nonuniform ducts do not
possess consistent convergence characteristics. In particular, experience
with approximations based on an assumption of irrotational mean flow and
acoustic perturbation indicates that, at least over the fairly broad
parametric range so far investigated, convergence characteristics are
good. On the other hand, when the irrotational assumption is not imposed,
necessitating a finite element approximation based on the primitive form
of the acoustic equations (in terms of pressure and two or three velocity
components), serious convergence problems can occur, particularly when
the mean flow has steep gradients, representative of typical boundary
layers. It is the purpose of this study to attempt to isolate with
simple examples the nature of the difference in convergence characteristics
of the finite element algorithms.

In modelling acoustic propagation in ducts the following assumptions
are often made:

1. The fluid is an inviscid ideal gas.

2. The linearized equations of motion accurately describe
the propagation of the acoustic disturbances.

3. The motion of the fluid is irrotational.
For the aircraft engine inlet problem assumptions 1 and 2 imply assumption
3 since, for this problem, the fluid is initially irrotational. By the
Helmholtz Vorticity Theorem, the fluid remains irrotational. However,
it is known that near surfaces assumption 1 breaks down, since the
effects of the fluid viscosity are then significant. 1In order to com-
pensate for this deviation, without giving up too many of the simplifica-

tions afforded by assumptions 1-3 the following could be assumed:



4, The motion of small disturbances is well described by the
linearized inviscid equations with a viscous mean flow
substituted in place of the inviscid mean flow. In other
words, the coefficients of the linear equations are altered
to represent a viscous mean flow.

Assumption 4 has no physical, mathematical or intuitive justification,
and for this reason it is generally argued that it is not appropriate.
However, we do make some calculations with it here to demonstrate con-
vergence.

Several numerical algoritlms have been developed to model the duct
acoustics problem, [1-14], probably the most versatile of which are the
finite element methods (FEM's). However, it has been reported [7] that
in certain instances some algorithms do not converge. In this document,
we consider three finite element algorithms used to model duct acoustics
problems; one based on a velocity potential formulation and the other
two based upon the primitive equations. It is shown that the algorithm
using the velocity potential will converge for a very broad class of mean
flows and geometries. The other two algorithms are not ammenable to such
analysis, so numerical experiments were conducted in order to estiﬁate
what problems may be solved with these algorithms and to compare the
algorithms.

Fix, Nicolaides, and Gunzburger [11-13] consider a least squares
algorithm to solve the acoustics problem using the primitive equatioms.
They prove that for the no flow case their algorithm will converge optimally
when a special class of finite element grids is used. A similar least
squares algorithm was proposed by Astley and Eversman [3]. However, they
reported that better results were obtained with a classical Galerkin type

approximation.



IT. ACOUSTIC EQUATIONS AND BOUNDARY CONDITIONS

In this section we consider the acoustic equations and boundary
conditions for a duct, (.

Assumptions 1 and 2, or 4 lead to the following equations for
the acoustic velocity and pressure in Q.

v

2
c c

p+V.(pu+ispm =0

(2.1)
fwu + (U.Du + (u.NU + y(lg-) =0

where

p>u are the acoustic pressure and velocity
p,c,U are the mean flow density, speed of sound and velocity, respectively.
w is the frequency.
If assumption 1l is used the mean flow (p,c,U) should satisfy
V.(pU) =0

(2.2)
DY+ UM =0

TT=KQY, C2=pﬂ

where

Y and K are constants and y = cp = Cy
When assumption 4 is used the mean flow should satisfy the viscous
compressible equations, However, these are difficult to solve so often a

boundary layer correction to an inviscid flow is used as a further approxi-

mation/assumption.



If the irrotational assumption is used equations (2.1) reduce to

Bevown+iom=o
c c
(2.3)
%p+iw¢+U.Y¢=0
where
¢ is the acoustic velocity potential.
If assumption 1 is used the mean flow will satisfy,
V(pVd) =0
1 (2.4)

o =o't - l‘—i ve.ve] Yt

where

® is the mean flow velocity potential

p is the (constant) stagnation density.

When assumption 4 is used (p,c,U) represents the rotational mean

BOUNDARY CONDITIONS

Since we are interested in the_duct problem we consider the domains, {1,

to be of a specific form. We assume (see figure 1),

=T ul,ulur, (2.5)



where:

lar |
L]

p = 1@,y): 0<y< d,}

left hand end of the duct

1
]

2 {(Z’Y): 0<y<d2}

right hand end of the duct
F3 = lower duct wall

I, = upper duct wall

dl’ d2 are the duct widths at each end and % is the duct length.

We assume that the duct walls are "hard". This requires that

un =0 and U.n =0

or (2.6)
%9 =0 and 2 =0
n
on P3 U I'4

where n is the unit outward normal to the duct.

It is interesting'to note that when assumption 4 is used the mean
flow will satisfy U= 0 on the walls while the tangential acoustic velocity
may or may not vanish.

It will be assumed that the duct terminates with semi-infinite
uniform ducts which carry a uniform plug flow. In this situation, the
solution in the duct, ), may be matched on to an analytical solution in the

semi-infinite ducts. This solution, for the irrotational problem, is given by

¢ = nio[a: exp(A: x) + a; exp(A;x)] cos(Eg ¥) (2.7)
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where

d is the duct width

+ - .
{an}, {au} are arbitrary constants

1

I-M?

+ . -
Xn = (ikM + Gn)

M = [U|/c = Mach. number of the mean flow

k =-% = gpatial wave number

Y
2 2, .am 2
Gn = 1[k” - (1-M )CE—) ]

When rotational disturbances are permitted the uniform duct solution is

- -1 [~ R - -
P - Cos(%ﬂ ¥) 3: exp(A: x)
= o g (BT - -
u nEO COS(d Y) o [An] an exp()\n x) (2°8)
Sin(F y)-
uv N d - ao exp(lo X)
- L. Il n -
where
- ] ] 1
g 1 L0
+ ! - '
- X ! - A |
T ! . L
pc (ik + ATM) | o (ik + ATM) Ik Tk
(A ] = : : i l
n - HIl
nm 1 R !
) —1 &5 — i
pe(ik + m M) | pe(ik + X M) 1
L -

Ia:}, {a;} and {ag} are amplitude coefficients

) .
k; are as in equation (2.7)

0 ik
MW

The last column of the coefficient matrix [An

of the disturbance. Similar representations are used at x = £, with [An]

replaced by [Bn] and the ap replaced by b,.
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The quantities {a:} and {a;} represent wave amplitudes of waves moving
in the positive and negative directions respectively. The {ag} are the
amplitudes of hydrodynamic waves that move with the mean flow and do not
exist 1if the flow i1s irrotatiomal. At the duct terminations we require
the solution within the duct to match the above analytical solution.

In particular we require

1 ~ ® 1, + - nmw
(V¢ + 5 U p). n | =p. I 8 (a. -a_) Cos(G—y) (2.9)
~ c2 ~ ~ (0,y) 1 n=0 % O n d1

1 ~ ® 2, + - T
(oV¢ + =5 U p). n| =-p, I 85(b. - b.) CosEL y)
~ CZ ~ ~ (L,y) pzn=0 n'n n d, y

or, when potential flow is not enforced

A «© 6
(pg-l-l—zp U).n| = I [ n a;_ *n a
¢ T T0,y) n=0 c(ik + AT ; -y B
’ nM) c(ik + AnM)
oM om0 T
S+t ('&—) an]I' Cos(z— ¥) (2.10)
1 1 _ 1
1 ~
(bu + 72 V.gf
C (2”}')
® Gn + <Sn - oM arm,. 0 nm
=1z [—__—_:— bn ST bt (d_)bn]l" Cos(d— y)
n=0 c(ik + )\nM) c(ik + KnM) 2 2 2

Where in equations (2.10) the subscripts I'; and Ty indicate that the quan-
tities appearing within the brackets are to be evaluated on I'; and Fz respectively.
We specify the waves incident upon the duct, . This corresponds
to specifying {a:}, {b;} and {bg} if the mean flow Mach number is negative
(specify {ag} if M > 0).
If the duct terminations are not in regions of uniform plug flow,

no analytical solutions corresponding to equations (2.7) and (2.8) exist.



Astley and Eversman [14] proposed a method for generalising these modal
boundary conditions. However some technical problems arise with this

approach so only plug flows are considered here.
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III. WEAK PROBLEMS

In this section we discuss several weak formulations used for the
modelling of the duct problem. We first discuss a formulation using
~an acoustic velocity potential. The other two weak formulations, based upon
the primative form of the equations, are those pursued by Astley and
Eversman [2-3] and Abrahamson [6~7] respectively.
l. Velocity Potential Formulation

In order to incorporate the modal boundary conditions of equafion
(2.9) into the problem it is necessary to define a space of sequences, S,

which are square summable in a weighted sense. Let

[~}
S = {a: ag + I |a |2n < e} (3.1)
=1 ©

The modal amplitudes at the left and right hand ends of the duct will be
denoted by (a+,a-) and (b+,b‘) respectively and will be required to lie

in S xS (di.e. a+€s and a~eS, etc.). The sequences of eigenvalues of

the ends of the duct are denoted by (X+,A-). In formulating the weak
problem we will need certain spaces. First recall that L2(Q) defines the
linear space of equivalence classes of measurable functions g such that
&2|8|2 < © and that Hl(Q) defines the linear space of equivalence classes
of functions in LZ(Q) whose first distributed derivatives are also in LZ(R).

The weak problem may now be stated. Find (¢,p,a-,b+) € Hl(Q) X LZ(Q) xS xS

such that
(1) I-i—‘;’p%(pvwl—zpm.vm
& c ~ c -
° + - 1 3] -
-0 nfo (an - an) Gn j COS(EI'Y) Y (3.2a)
I
+0, T ( -b)éij c°s(3—"y)w = 0
n=0 T 2
2
(11) J{%p. U.Y6 + 1u6}q = 0 (3.2b)
Q
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1ii) ¢ n{i—(a: + a;) - J ¢ Cos(zl‘—11T y) }En + {é— (af + a7)
r

n=l 1 1 0 0
1
(3.2¢)
- J ¢}EO = ()
I-‘1
(iv) z n{%—(b: + b;) - J ) Cos(g-‘rI y) }-p_n + {%1— (a; + aa)
n=1 2 2 2
r
2
(3.24)

- J 018y =0 Y Woas0.8) € B (@ x L7@ xS x S
r
2

In the statement of this weak problem (p,c,g) is the mean flow, a+ and b~
are presumed to be given and P1s d1 and Pys d2 are the values of the-mefn
flow density and duct widths at the left and right hand ends of the duct
respectively. The quantities 6; and di are the radicals defined in
equation (2.7), evaluated at the left and right hand ends of the duct
respectively.

It is shown in Appendix I that this weak problem is well posed under a
physically reasonable hypothesis on the mean flow.

We have éhosen to solve for the pressure explicitly. As an alter-
native the velocity potential could be calculated initially by eliminating

the pressure and then the pressures calculated subsequently.

2. Astley Eversman Formulation
The modeling of the modal boundary conditions (equations (2.9-2.10)
is more involved when the primative equations are utilized. Astley and

Eversman proposed the following ideas to accomplish this.

12



For each (p,u) € Hl Q) x Hl (Q)2 define six sequences a+, a , ao,

b*, b7, b° where

'é."" cos (2—“ v) P
n
-1 2 1 nm
-] =[A]1 = cos(z—y) u (3.3a)
a]:1 n dl T1 dl 1
nm
-ag- cos (d—1 )] ‘-uZJ
'b+" -cos(ﬂ y) ] P
n -1, dy
b = [Bn] fl— j cos({dﬂ y) u, (3.3b)
n 2 F2 2
0 (¢] (ﬂ ) u
Lbn- - cos dZ 774 - 2<
for n=1,2,3 with a0 = b0 = (
- 70 0
1 1 -1
+ + -
Aao = - AO Y — )\0_ ;— J [z ] (3-43)
- pe(ik + A M) oo (ik + A M) 1< 1
a : 0 0 r
0 T 1
1
-1
+
b0 - 3\+ - AL p
0 0 1
- = T = N " (3.4b)
b pc(ik + A M) pe(ik + A M) 2 1
0 0 0 r Fz
2

We now fix some notation so that the space of solutions may be defined.
For w = (p,g) € Hl Q) x Hl (Q)2 define

At ul@ x wt@? - 22
by

AT = a

+ : -
where a' is defined in equation (3.3). Similarly we difine A , Ao, B+,

B, and BO.

13



Let a+, b, bO be specified.

and Eversman are:

The function spaces of Astley

U={wer @ xa' @2 a7 =a",8"@ =17,

80 w) = b0}
U= {w e 8@ x B @?: atw) =3 ) =B w) =0}
with the weak problem becoming:
Find (p,u) € U such that
-iw - 1 —
(1) J { = Pq+ (pu + =5 U p). Vq!
qa ¢© c ,
1
i § P.M
- Z {-——-l"+— a: - = " + 1]; (';Hl) ag}
n=0 c(ik + A M) c(ik + A M) 1 r
n n 1
J Cos(%1£ ) q
1
1
2
o ) 0,M
oD {—2—t - + = & b))
n=0 c(ik + nM) c(ik + 2 Fz
-J Cos(g—n y) q =0
r.. 2
2
(ii) j {iwu + U.NDu + (U*NU + Y(%)}. §-= 0
Q
V (q,v) e U
Here it is understood that a+, b and b0 are data with a = A-(p,u),

b = B+(p,u), and ao = Ao(p,u).

14
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3. Abrahamson Weak Problem

Abrahamson [6] used the following weak problem for his ADAM

computer program. Let

V=1{(p,u) € U: u-nlr =u.nlr =0} (3.9)
- T3 T T s

v, -VNu,

then find (p,u) € V such that

Ji—‘;p+y.(og+1—zgp)}3=o (3.10a)
Q c c

j {iwe + (U.Du + .7V + y(Pp->}.§ =0 Vg,ve - (3.10b)
Q

15



IV. FINITE ELEMENT APPROXIMATION OF THE WEAK PROBLEMS

1. Velocity Potential Formulation

The function spaces Hl () and L2 () from which ¢ and p are chosen

-1
2

The superscript is used to indicate the degree of inter-element continuity

may be approximated by the usual finite element subspaces,Mz(Q) and M " (Q).
(0 continuous, -1 discontinuous) and the subséript indicates the degree of
polynomial used in the construction of each element. To approximate the

sequences the following finite dimensional subspaces are utilized.
SN={aeS: an=0 V.n>N} . (4.1)

The approximate weak problem is then; Find (¢,p,a-,b+) € ]M?((Q) x]MEl(Q) X
SN X SN such that equations (3.2a-d) hold V (Y,q,0,8) emg(ﬂ) X

~1
M @) x SN x SN

Under certain technical assumptions it is shown in Appendix 1, that

if,
(1) L > k-l
(ii) N > %1- where h is the maximum diameter of the elements used
in the finite element triangulation,
then,

A

¢ - 9, ] c.h
0't =1 4.2

lp - pOlO < czhk (¢;» ¢, constants)

where (d)o,po) is the solution and (¢,p) is the approximate solution.
In other words the finite element scheme converges with an optimal rate

if suitable care is given to a required compatibility between the approximation

for the velocity potential and the pressure and boundary coefficients.

16



2. Astley-Eversman Algorithm

It is not immediately obvious how the class of functions U
discussed in section III.2 may be approximated. Astley and Eversman
[3] proposed the following algorithm to generate (non-conforming)
approximations.

L0 0,..2 1 1,.,2 .

Leth(Q) x]E{.k(Q) € H(R) x H(R)" be the usual finite element

subspaces as described in section IV.l above. On I‘1 the trace of any

element (B’P) € Mg(Q) X t'f.‘(i(ﬂ)";Z may be written as

P ¢ p
%] 4.3)

u = I P u *

1 =1 i 1
u u

2 Fl R d i 2

i
P P :
where uy correspond to the function values of u, at node i on I"1 and
u, u,
i

d>i are the interpolation functions corresponding to node i on 1"1. The

nodal values of (p,u) are then constrained to satisfy,

% v % P
o, z ¢, u
. i=1 * 1
1"1 ¢j @i u,
i
i T ) +
N CDJ cos (3_ ¥) al
= I J ) (A ] 1 COS({;—Tr ¥) -1 4.4
=0 J n 1 a
=T $ nw n
1 h| cosq— Il .0
3 - a
1 n

17



for all § =1,2,... M. N represenfs the number of modal amplitudes
being used in the approximation, and [Ah] is the matrix defined in
equation (2.8). Equation (4.4) gives a relationship between the modal
amplitudes and the nodal values on the boundary for the approximation.

This relation may be written
Y% = [Tl A (4.52)

where Ub corresponds to the nodal values of (p,u) on Fl and A the vector
of nodal amplitudes (a:, a;, ag, n=1,2,...N). An analogous expression

for the nodal values on FZ may be written as

Hz,’ [Tl] B. (4.5b)

If a typical element of Mg(ﬂ) x M&(Q)2 is described by

P Y%
u | = [®] U (4.6)
uy %
where U, and U, are the nodal values on Fl and Fz and U contains the
other nodal values a typical element of the space used to approximate
U would described by
T
P -0 4
u | = [®] I U 4.7
ug Tod LB

where I is an identity matrix and [To], [TR] are as in equation (4.5). The
constraints on a+, b, etc.can now easily be implemented using penalisation.
Astley and Eversman [7] describe the implementation of this algorithm in

detail.
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V.  RESULTS
1. Uniform Duc; Results

The analytical solution to the acoustic problem for a uniform duct
carrying a uniform mean flow was given in equ#tions (2.7-2.8). This provides
a test case which can be used to estimate how well the finite element approx-
imations do approximate the solution. Throughout this section we use the L2

norm of the error in pressure, defined by,

2
SAFEENLEEN
P-pyl g P - Py
Q

where

p = analytical solution

Py = finite element solutiom,

to estimate the error in the solution. Standard results [15] show that a
finite element approximation using polynomials of degree k would have an

optimal rate of convergence in the LGorm of order k+1, i.e.

o - byl g < e

where

h = diameter of largest element,
if the solution sought was sufficiently smooth. Fix, Nicolaides, and
Gunzburger [l11] obtained optimal convergence for the no flow case using
their least squares scheme with linear triangles (k=l) on a "criss cross"

grid (i.e. a grid satisfying the grid decomposition property [10]).
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Potential Flow Code:

We consider the potential floﬁ code separately from the other
two algorithms for two reasons. First, we have the analytical results
in the Appendix that indicate that the finite element scheme should
converge optimally when quadratic elements are used for the velocity
potential and discontinuous linear elements are used for the pressure.
Secondly, the ;esults indicate that extremely 'rough' mean flows are
admissible since no mean flow derivatives enter this problem.

When the finite element approximation described in equations (3.2)
was used to solve for the amalytical solution given in equation (2.7)
optimal convergence of the pressure was observed in all cases tried.
This was expected since the analytical solution has infinitely many
derivatives. A more interesting example may be constructed by combining
two of the solutions given in equation (2.7) with different mean flows.
(See Figﬁre 2) This results in a problem with a discontinuity in the
mean flow and the acoustic pressure, the velocity potential being
continuous. The compatibility condition at the interface may be

written as
1 :
[eu + 25 t). ] ©.5) =0

We consider the results using the following as data:

-+

w=1.0, a  =1.0 a =0, n=1,2,..., £=1.0, d = 0.5
0 n

c = 1.0, ba =0 n=20,1,2,....

1.0 if x<0.5 , _ -0.25e  x<0.5

D(X,Y) = U
0.5 if x > 0.5 ~ -0.5 e x > 0.5

20



The choice of a plane wave incident at x=0 (ag = 1) is presented so
that the jump in pressure at the interface can easily be plotted.
Calculations were made with non plane waves and the results were
essentially the same.

Figure 3 shows the real part of the pressure plotted near x=0.5
that was calculated using a mesh with 10 uniformly spaced elements across
the duct and 20 elements along the duct (a 10 x 20 mesh). This solution
almost exactly overlays the analytical solution. It can be seen that
the jump is captured without any of the characteristic wiggles associated
with ill-posed problems. It is interesting to note that while the
pressures away from the discontinuity could be discontinuous, the solution
has almost no jumps at the other element interfaces. The 10 x 20 mesh
used for figure 3 has element boundaries along the interface x=0.5, so
the jump can be captured exactly. If a 10 x 21 element.mesh is used
the discontinuity can no longer be captured exactly since the jump in
pressure does not coincide with element boundaries. The solution for
the real part of the pressure near x=0.5 obtained with a 10 x 21 mesh
is given in figure 4. It can be seen that in this situation the pressure
in the element centered at x=0.5 simply stradles the jump and otherwise
the pressure is still very accurate. It is possible to use elements
with continuous pressures to solve this problem. This was done for both
the 10 x 20 and 10 x 21 elemens meshes and the pressures are plotted in
figure 5 and 6. The error associated with the discontinuity appears to
spread over at least three elements for each of these solutionms.

A plot of the I?error in the pressure versus mesh size (h) is given
in figure 7. When discontinuous elements were used that had boundaries

on x=0.5 the convergence rate is optimal (slope = 2). The other two lines

21



witﬁ slope = 1 are the convergence curves for the case where the inter-
face x=0.5 always bisectes an element so that the jump couldn't be
calculated exactly and the case where the pressures were continuous.
Since this problem does not have a smooth solution the approximation
results given in the Appendix do not apply and this explains why even the

discontinous pressures may give sub-optimal convergence rates.

ASTLEY AND ABRAHAMSON CODES:

The weak problems presented in equations (3.8) and (3.10) both
involve derivatives of the mean flow so discontinuous mean flows, like
the one discussed fo; the potential flow code, can not be considered.
In order to investigate the behavior of the two algorithms, a uniform
duct case was considered; the solution being given in equation (2.8).
Since the solutions were all continuous it is possible to calculate the
H! error pf the solution defined by:

2
| p - Phll = J{lp - o1+ 176 - 2 [?)
9]

where

P = analytical solution

Py finite element solution

Standard results show that if the solution sought is smooth, and
polynomials of degree k are used to construct the finite element mesh

approximating the solution, the optimal Hl rate of convergence is k, i.e.

k
Ip-phl _<_Ch
1
Error calculations were made using both the L2 and Hl norms.

22



The following data are used for the uniform duct problems considered.

w=1.0, &4=1.0, d=0.5
U =-0.5 e, P = 1.0, c =1.0

af =b =0, at =b2 =0 n=2,3,... b-=0 n=0,1,...
0 0 n n n

Two cases are discussed, the first has a wave of unit amplitude incident

at x=0 corresponding to the first transverse mode (a; = 1.0), and the second
case considers a wave of unit amplitude incident at x=1.0 corresponding

to the first hydrodynamic mode (b? = 1.0). This latter case has no
correspondence in the irrotational model so the primitive form of the
equations must be used to solve for this solution. For each of the two
algorithms eight noded isoparametric elements were used for both the
pressure and velocity., Qptimal rates of convergence would then be 2 in

the H1 norm and 3 in the L2 norm.

Figures 8 and 9 are plots af the #l and L2 errors in velocity and
pressure respectively, vérses mesh size for the first problem. For this
problem both algorithms gave (approximately) the same convergence rates,
however these rates are not optimal. The rates were one and twoﬁfor Hl
and L™ errors respectively. This is precisely one less than optimal.
Astley's algorithm consistently gave errors that were smaller than those
given by Abrahamson's algorithm. The results for the second problem are
shown in figures 10 and 11. These curves show that Astley's algorithm
still gave at least the same rates as for the first problem while Abraham-
son's algorithm converged slower (in the pressure) for this problem,
demonstrating that Abrahamson's code has convergence rates that are

problem dependent.
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Figure 2. Schematic of the uniform duct test case with
discontinuous flow (non-physical).
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2. Non-Uniform Duct Results

The problems with convergence reported by Abrahamson [7] were

encountered with the non uniform mean flows that are usually encountered

with variable geometries. In order to compare the performance of the
codes in such a situation a quartic half duct was chosen as a test
problem. The quartic duct under consideration was symmetric about the
throat and had terminations that were uniform ducts. The throat to
exit area ratio was chosen as 0.5 and the duct length and termination
height were both set to 1.0. Three mean flow cases were considered:
Case (a) The simplest mean flow was constructed by solving the one
dimensional nozzle equations to yield an x component of mean
flow velocity, density and speed of sound. The y component
of velocity at the upper wall was chosen so that the flow
.would be tangential, elsewhere it varied linearly from zero
on the center line to its maximum value on the upper wali.
The inlet/outlet Mach. number was chosen to be 0.3 yielding
a Mach. number of 0.86 on the duct centerline at the throat.
Case (b) The next mean flow was constructed by modifying the flow
described in part (a) above to give a boundary layer at
the throat. To create the bodndary layer a weight (w) was
calculated according to
w(x,y) = sin Lg(l - Y%;T %5 x (2~ x))]

where

Y(x) is the duct width at x.



The modified velocity field was then the product of the
velocity field given in part (a) and the weight w. At
the throat this weight gives a sinusoidal boundary layer.
The density and speed of sound were not adjusted.

Case (c) The third mean flow was constructed like the one in (b) above
except that a much steeper boundary layer was chosen. A
one-seventh boundary layer apprdximation, similar to the
empirical relation observed in pipes, was used.' The
weight (w) chosen to yield such a.layer is given by,

4 1/7

w(x,y) = [1 - ,—{%z—zx (- x)]
The mean flow, for all three cases, was evaluated at the nodal

values of the finite elements, and the element interpolation functions

weré used to determine the flow within an element. Eight noded isoparametric

elements were used for all cases. Case (c) has very steep gradients so the

element interpolation functions would not approximate these gradients very
well on a coarse mesh, however, since this is typical of what happens in
practice we did not make any attempt to correct this problem. The mean

flow for case (c) has a singularity in its derivatives at the throat so

the integrals defined for the Astley and Abrahamson weak problems may not

be continuous.

Since the mean flow varies rapidly near the throat and at the upper
wall, meshes were chosen that had a higher density of elements in these
regions. The meshes were constructed using the following transformation

for the nodal spacing in the x direction,
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X(E) =§'[1+- 1 + x

Equal increments of £ were used to yield nodal x values. The following

transformation was used for the nodal spacing across the duct,

[(ZX + 1) - nX]
x+1

y(m =¥x) . n » 0<n<1l x=1.5

where

Y(x) is the duct width at x.

Again equal increments of n were used to yield the nodal y values
at each axial location. Along straight sides the midside nodes were
always placed in the middle. A typical mesh with 5 elements across the
duct and 10 elements along the duct (a 5 x 10 grid) is shown in figure 12.
Three meshes, 5 x 10, 10 x 20 and 20 x 40 elements, were utilized for
each of thé three cases (a-c) described above. The frequency (w) was set
to 2.0 and the problem of a plane wave incident at x=0 (a; = 1.0) was
selected. For this problem the meshes described above would be considered
very fine since they have many elements per wave length. With realistic
geometries and frequencies meshes with a similar number of elements per
wave length would probably exceed the capabilities of most computers.

As no exact solution exists for the non uniform duct problem a
comparison of plots of pressure amplitude contours is made. It is expected
that if the contours are smooth where the mean flow is smooth, and if the
contour pattern only changes slightly as the mesh is refined, the
solution is converging. When appropriate, piots of the pressure

are presented for comparison of the schemes. For the finest grid,
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calculations were made of the L2 difference between the pressure given
by the potential flow code and the pressure given by the other two
algorithms.

Figures (13a-c) show the pressure contours for case (a) given by each
of the three codes with the 20 x 40 mesh. Using the criteria discussed above,
it appears as if the potential flow code and Astley's algorithm are
converging, however the plot given by Abrahamson's algorithm is not
particularly smooth and it is difficult to conclude anything. One
conspicuous difference between the potential flow code and the other
two algorithms is the apparent rate of convergence (cf. the uniform duct
solutions). Figures (l4a-c) show the pressure contour plots for each
of the three algorithms given with the coarsest (5 x 10) mesh.

Figure (14a) shows that the potential flow code contours are qualita-
tively the same as those for the finer mesh, figure (13a), however, the
contours for the other two algorithms show the presence of large wiggles
which almost obscure any pattern present.

Figures (15a-c) show the pressure contours given by the three
algorithms for case (b) on the finest mesh. Case (b) exhibits the
trends discussed in case (a) ahove and, if anything, to a greater
degree. Comparing the contour patterns given by the potential code
and Astley's algorithm shows a difference in the pressure near the
upper wall. Figures (l6a-c) show the wall pressure plots corresponding
to the three contour plots given in figures (15a-c). It is apparent
that the rotational codes develop a different pressure profile at the
.upper wall near the throat. Another differemnce between the rotational

and irrotational codes is the level of the solution. This is indicated
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qualitatively by the peak pressures in the throat given in figures 15,
and quantitatively by the L2 norms of the solutions given in figure 17.
Figure 17 contains the norms of the solutions for each of the three
cases and the L2 differencé between the potential flow pressures and
the pressures given by the rotational codes for the finest grid.

Figures (18a-c) show the pressure contour plots given Sy each of
the three codes for case (c). Inspection of these plots shows that
Abrahamson's algorithm almost certainly is not converging and that the
patential flow solution almost certainly is. The results given by
Astley's algorithm are inconclusive and are very similar to those of
Abrahamson's algorithm for cases (a) and (b). Figure (19a-c) show
plots of the pressure along the lines x=0, x=0.5 and x=1.0 given by
each of the algorithms on the finest mesh. The pressure given by the
velocity potential code at the throat contains a discontinuity. The
pressure at the throat given by Astley's algorithm is similar but it
is reminiscent of the pressures shown in figures (5) and (6) where
continuous pressures were used to model a pressure jump that was modeled
much better by the discontinuous elements. The pressures given by
Abrahamson's code at each of the three axial locations contain tremendous
wiggles.

Figure 17 tabulates the L2 pressure norms given by each algorithm
for cases (a-c) on each of the meshes and the L2 difference between the
rotational and irrotational pressures with the finest mesh. It is
apparent that the pressure is consistently larger fér the potential flow
code than the rotational flow pressure and it appears that if the Abrahamson

and Astley algorithms converge, the pressure is similar. The L2 difference
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between the pressures given by the irrotational and rotational algorithms
was greatest for case (b) where they differed by about 30%. The difference

for cases (a) and (b) were approximately 10%Z and 15% respectively.
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CONCLUSIONS

A combination of analysis and numerical experimentation has been
carried out with the goal of examining the convergence characteristics
of three finite element algorithms for the modelling of acoustic propaga-
tion in nonuniform ducts carrying a mean flow. The first model is based
on the assumption of an irrotational mean flow and irrotatiomal acoustic
perturbations. This model is currently in use in the calculation of
propagation in turbo-fan engine inlets and the subsequent radiation to
the far field. 1In the present study the physical constraints are relaxed
to permit a mean flow which is not irrotational, but which is imposed on
the irrotational model by entering it as data in the model. As viewed
at this point, this is a non-physical model but serves to broaden the
scope of the investigation. In the irrotational model the field variables
are acoustic velocity potential and acoustic pressure (or density).

The other two models do not impose the irrotational assumption. As
a consequence they use the primitive variables, pressure and two components
of velocity. One of these models, due to Astley and Eversman [3], takes
advantage of natural boundary conditions and introduces the idea of
specifying acoustic input, reflection, and transmission boundary conditions
in terms of modal amplitudes. The second rotational model is due to
Abrahamson [6,7] and uses forced boundary conditionms.

In Appendix I it is shown by analysis that under stated restrictions
the velocity potential formulation will converge optimally. Numerical
experimentation on both uniform and nonuniform duct models verifies the
analysis. The stated restrictions are somewhat different than those used
in current turbo-fan radiation codes in that (1) velocity potential and

pressure are solved for simultaneously (as opposed to solving for potential
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and then obtaining pressure by calculation) and (2) the approximation
for velocity potential is sought in the subspace of continuous functions
while the approximation for pressure is sought in the subspace of dis-
continuous functions (as opposed to the subspace of continuous functiomns
for both potential and pressure).

No analysis is presently available to isolate the convergence
characteristics of either of the two models based on the primitive
variables. Information is derived entirely by numerical experimentation.
It is found that in the examples considered optimal convergence is not
achieved and in some instances lack of convergence is observed. In
general, it appears that the Astley-Eversman algorithm displays incon-
clusive convergence characteristics, certainly not optimal, but not clearly
nonconvergent. The Abrahamson algorithm is much more likely to display
nonconvergence and this behavior is clearly problem dependent.

It was also noted that the potential formulation, with a rotational
mean flow forced on it, does not converge to the same result as the fully
rotational models do (when convergence occurs), the difference being
more obvious in the.boundary layer cases in which a stronglshear layer
exists. Furthermore, the tendency toward nonconvergence in the rotational
models is exacerbated by a strongly sheared boundary layer. The poorest
convergence occurred in the numerical experiments using the 1/7 power
boundary layer.

It is concluded that:

(1) The potential flow model converges with reasonable assurance.

(2) The rotational flow models are subject to slow convergencé or

nonconvergence.

(3) Poor convergence or nonconvergence is most likely to occur

with strongly sheared flows.
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ABSTRACT

We investigate a finite element approximation of a problem in
duct acoustics where the medium is inviscid, the motion is assumed to
be irrotational and non-homogeneous boundary conditions are imposed
which arise from the approximation of an infinite duct with one that
is bounded. A study is made of restrictions for the boundary conditions
and their approximation for which a finite element approximation of the
mixed-hybrid type is well-posed. In particular we prove that under a
reasonable hypothesis on the data that the method will converge
optimally if the sequence of boundary coefficients has more than h_1

members and the degree of polynomial (k) for the pressure is greater

than or equal to the degree, k+l, which is used for the velocity potential.



1. Introduction

; :  Find ( {a’}, ('hH
The problem of interest is the following: n PsP> nl? 0

such thét
- -2 )
(1.1a) Awe Zp + 7 - (pY¢ + c gp) =0 in Q
(1.1b) o7lp + UTp + iwp =0 in @
=2 . = E Gl(a+ - a_) cos(nmy/d,)
(1.1le) (pY¢ +c gp) g Pr n n 1
Fl 1 n=0
-2 T 62’ - b)) cos(any/d,)
(1.1d) -(pY¢ +c U p)'g = 0r X n( q ~ By) cos nny/d,
r 2 n=0
2
1.1 o] = ; (a+ + a_) cos (nwy/d,)
(1.1le) Fl 0=0 n n 1
(- -] + _
(1.1£) ¢|F2 = nio (bn + bn) cos (nwy/dz)
. 3 _
(1.1g) 5 =0 on T, U T,
2 4
! C R represents a duct with boundary 3Q = y Fi where Fl = {(0,y): v € ]O’dl[}
i=1

and FZ = {(L,y): y € ]O,dz[}. In addition F3 and l"4 are assumed to be such
that ( satisfies the cone condition. The variables of interest p(§), ¢(§) el
define the acoustic pressure and velocity potential; g € ﬂadﬁ)z represents

the mean velocity; c, p € Lm(§5 denote the sound speed and gas density; w

. + _ + - = - 0
denotes the pertubation frequency; and {an} = {an}n=0 and {bn} {bn}n=0

represent incoming waves and are assumed to be known. Also,
. X 1
st =itk - 1 yma)2E 1= 1,2
n I, T, i
i i
where M = |U|/c and k = w/c represent the mach number and characteristic

wavelength respectively and MF » etc. denotes its restriction to Fi, i=1l or 2.
i
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Equations (l.la-b) are a model for an inviscid, non-heat conducting,
ideal fluid which is undergoing an irrotational, "small", periodic-pertubation
about a subsonic mean flow (M < 1) in a duct. The boundary conditions (l.lc-d)
define compatibility conditions between incident and reflected waves in a
uniform duct. (cf. Eversman and Astley [3]).

The compressible flow equations have received considerable, attention
in the literature (e.g. Bristeau et al. [1]) and equations (l.la-b) represent
a linearization of these. Also Fix and Nicolaides [4] have studied a mixed
model with Dirichlet boundary conditions for the case when the flow is
possibly rotational but g = 9 (i.e. a mixed model for Helmholtz's equation).
In particular they have investigatea conditions under which an increased
convergence rate holds for the pressure (see also Fix et al. [5] and Fix
and Gunzburger [6]).

We will study a finite element approximation to (l.l) which is
mixed in the sense that (¢,p) are approximated independently and hybrid
in the sense that (d),{a;},{b:}) are approximated independently. In section 2
we define a weak problem for the boundary-value problem and specify a finite
element approximation. Then in section 3 we prove that the weak problem is
well-posed and in section 4 we prove that the finite element approximation

converges under suitable hypotheses.
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2. The Finite Element Approximation

We first define a weak problem which is associated with (l.1)

and then consider a finite element approximation of this problem.
First we fix some notation.
Let I-IS(Q),.°° > s > 0, denote the usual Sobolev spéce over
lZ

-]
the complex field and define $ = { {g }"_ € £Z@uioh: I alg |® + |gyl% < =)

n=1
where KZCNLIO}) denotes the space of square~summable .sequences of complex
numbers. In addition || - || 5.0 and || .1IS will denote the usual norms for

H°(Q) and S respectively. Also set FSC: F4 with meas FS > 0, let

H=1{ge Hl(ﬂ): glF = 0} and define,
5

A(n) = |1 n=0

n n eéN

Bi(gn,w) =g, JW(Y) cos (amy/d))dy V {g }eS, veH;i=1,2

T,
i

Weak Problem: Find (¢,p,{a;},{b:}) € Hx LZ(Q) x $x S such that,

(2.1a) f[-mc’zpﬁ+ (0% + ¢y p) - V7]
9]
1.1, - > 2.2, +
+p LS8 B (a_,W) +0p I 8% BZ(b_,¥)
I‘ln=0n n I'Zn:onnn
1.1, + ® 2.2 -
=p ) B(a,¢)+p Z5B(b,ll))
Fl n=0 0 "n'n FZ n=o R D
{ 1
(2.1b) [P 'p +U.Vd + 4wp] q =0
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«© =]

(2.1c) nEO d(n)(a + a:)an = (2/4)) n§1 n Blll(an,E) + dzln(l,(ao,?i)
i -\ = e 2,- - 1.2, =
@10 LA b+ b)) B = (2/d) I nBGb +d By(8y» )

V (W,a.{a },{8 ) € H x 2@ xSx S

Remark 2.l1. The requirement that ¢ =0 on I'S‘ is a technical detail
which is dependent on the specific choice of data. For convenience we

will always include this condition.

Remark 2.2. A weak problem with fewer unknown variables may be constructed
by eliminating the pressure, {a;} and {b:}. However these variables are
required by Acousticians for comparisons with experiments.

In constructing the finite element approximation we shall need
the following standard notions ( cf. Ciarlet [ 2]). Let Th denote a regular
family of triangulations of Q where h denotes the maximum diameter of the

element partition. Define

IPk(T) = {polynomials of degree < k on T}, T € Th

]Mk(Th)= {gecE®: glrs =0, g[T= f + 4’.2 where f, E € ]Pk(T)
VTEe Th}, k>1

“1:1 T) = (ge L2@): =€+ if where £, £ € P, (T)
VTeT) k>0

N
N 2 2
Sy = { {gn}n C ¢ ni;lgnl + Igol <®}, N>0

=0

A=l




Here C(Q) denotes the complex-~valued functions which are continuous.

. -N} +N} . -1 ,
Approximation: Find (¢h’ph’{an ’{bn ) eMK(Th) x]Mm(Th) x SN x SN

such that,

. =2 - - -
(2.2a) [ [ - dwc Préy * (p\z¢h +c 2[1 ph) . Y\bh]
A .
| o N,
; +p T § (a No)+o ZGB(b N
‘ Ty gm0 2 n ’'h Ty 1m0 h
N N
1,1 2 .2
(2.2b) f (o™ ph + U V¢ + w‘bh] qh 0
Q
N P N
(2.2¢) T n(n)(a a )an' = (2/d1) I n B (a ,¢ ) + dl B (Go,d) )
=() . n=1
(2.2d) : a(n) (b N4+ b7 ) BN = (2/d.,) : 32<§ Ny + 4 132(3“ )
¢ " 0=0 nin n n Bn 2 n=1 o Ea ’¢ 2 0’¢h

N, (N -1
Y (¥phqp-fo (B ) eMy(T) x M "(T) x Sg x S

where £ > 1, m > 0 and N > 0
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2.1 Preliminaries

st || «|lg = Il < llg,gand [+ ly =1+l g We will list some
lemmas and hypotheses that will be needed in the sequel. First the
standard Poincaré inequality.
Lemma 2.l1. Suppose Q satisfies the cone condition and meas I‘S > 0.

Then there exists a A > O such that

190115 > o 113 VoeH

Lemma 2.2. Let {o.n} € S, ¢ € H and suppose { satisfies the cone condition.

Then for i=l1,2 there exists a positive constant Y(di) such that

 A@lBie .ol vaf max (1 @mD | gl vl
n=0

Proof. First note that by the trace theorem, Lions and Magenes [7 ], there

exists a'y > 0 such that V¥ y € H, wlr € H (r, ), and || ¥ H% r < Y I v for

Iy
i
i=1,2 since Fi C 3. Then because of the definition of B (*,+) and

the Cauchy-Schwarz inequality, B;(an,lb) exists and

T oa@isie i< df | el I Wil g
n=0

where w; = J lpe:; with {e:} being defined by
r

i

1
d.'i n=0
i

i
en(y)

(Z/di)Li cos (mry/di) n €N
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Now by using classical interpolation theory for Sobolev spaces ( cf. Lions
and Magenes [ 7 ]) H%(F ) = {g: g € Dom([I-D ]%)} may be constructed as an
intermediate space between L (Fi) and {g € H (Fi): Dg(Q) = Dg(di) = 0}. Hence
2 2 2.%
Iy i = I [1+@r/d)"] Iw 12 > min(1,m/d, Dl {w HE
%,T, S.
i n=0
which leads to the desired estimate after we combine inequalities.
Next we cite a standard result of approximation theory ( cf.

Ciarlet [ 2]). Let | - Im Q for m € N, denote the usual seminorm on Q).

Lemma 2.3. Suppose Yy € H (Q) k >1, and q € Hm+ (), m > 0. Then if Th
is a regular family of triangulations of {, there exists a Cl’ C2 >0

(independent of h, ¥ and q) such that

v, €M (T)

. m+l

inf II q- Vh ”0 < Czh IQ|m+1,‘Q
-1 ‘

vy e]Mm (Th)

We now list some reasonable hypotheses that the known variables

should satisfy.

Hypothesis 2.1. {a:}, {b;} €S;c,pel’@ ; we {gek: g >0};
o = 2
and U € L (@) with

ess inf c(x) = S >0

x € Q

-A-7-



Fe lheggy = <

ess inf p(x) = g > 0

x€en

I e = °1

Nol] _,=uv
- L”(Q)z 1

Here LQ(Q)N, for N = 1,2 is defined on the real scalars.

We close with a standard approximation result for sequences.

First we define for 2 > 0

S = ({g} e 2 U (OH: I aG
n=0

Lemma 2.4. Let {an} e St n > 0. Then for N > 0 there exists a positive

scalar C such that

inf  |{a, - g Hg<en " [l
{g } e Sy

st
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3. Existence and Uniqueness of Solutions

We note that the form on (H x LZ(Q) x S x 3)2, which represents the
left hand side of (2.la-b) and the right hand side of (2.lc-d), is sesquilinear
and the form on H x LZ(Q) x S x S, which represents the right hand side of
(2.la-b) and the left hand side of (2.lc-d), is antilinear. Thus to prove
;hat the weak problem has a unique solution it suffices to show that the
conditions of the Lax-Milgram theorem are satisfied.

First observe that from the definition of 6:, along with Hypothesis

2.1, that
i A .
(3.1) |6, < By am)  for i =1,2
2 2 2.} - +
where R, = [kri + |1 - Mril(n/di) 1% 5 let u = (¢,p.{a}, {b_DH ,

2 2 2 2
v=ha a8 N, U=HxL @ xSxS, [lully = Ilelly + llell

- 2 +.12
+ “{an}lls + “{bn}”S Yu € U; and define

x

F(v) =pp I Gi 3; (a:,w) +op I si Bi(b;.w)

1 n=0 2 n=0
- ; ;(n) (a3 +b" B)
n=0 nn nn
. o=2 - -2 - -1 -
A(u,v) = J [ - dwe "py + (V6 +c "Up): W+ 0 'pq
Q
, - .- > 1,- - ® A
+ (U- -
(U-Vd)q + dwpq - (2/d) nil n B (o ,9) + nEO n(a_ a
-1.1,~ = e 2 = = .
- d1 Bo(a0,¢) - (2/d2) L n Bn (Bn,¢) + I n(n)bn Bn
n=1 n=0
132 @E 3 5 11, - 2 2, +
-4y By(Bye®) + I [pp 8 B (a %) +op S B (b .y)]
n=0 1 2
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Lemma 3.1. Suppose Hypothesis 2.1 holds and @ satisfies the comne
condition. Then F € U” and A is a continuous sesquilinear form on U x U.
Proof. From the definition of F, use of the Cauchy-Schwarz inequality,

Hypothesis 2.1, 3.1 , and Lemma 2.2 we have that

?

|F(v) | zep klvd? max (1,(d1/v)%)”{a:}ﬁg Nwll,

+or b,vd max (1,(d,/m) D[ 6 Hig vl

+. -
s ety g e g + 1631 168 3l g

thus

I Flly- < max(l, max[p d? , max (1,<di/w)*>vl)<|l{a:}|ls + [lte_Hi g

i=1,2 i

hence F € U°. Now if we perform similar operations on A(-,*

1

2 -
» Pg o U1’ w, 1,

-2 -
[A(u,Vv)| < max(wco » Pys Upcy

&

max [(pf.kidi

_ 1
+ Zdi%) max(l,(di/w)’)lv>llullullv Iy
i=1,2

which completes the proof.

i - R.d.)dT% max (1,(d, /M) and £.,=(U, + w/VK) (I+c2)
Define El Y max [(2 + pri idi)di max 2CH an 9 1 0 )

i=1,2
Theorem 3.1. Suppose Hypothesis 2.1 holds and ! satisfies the cone condition.
Then if there exists a positive number € such that

26 <8 <@Gogh/ () - &0, VE,

there exists a unique u € U satisfying (2.1) with ||u “U <C (H{a:}lk

+ len}HS) where C > 0.
-A-10-



Proof. Lemma 3.1 holds therefore we need only.prove that A is coercive

on U x U. Using Lemmas 2.1 and 2.2, Hypothesis 2.1 and the Cauchy-Schwarz

inequality,

Re ACu,u) > p M/ (L + [ ¢ [+ o7 e I+ I&7HE + 18535
~g, lollg ol - g llell(allg+ 1133

and by applying the arithmetic-geometric mean inequality to the last two

terms we have with C, = pOA/(l + 1) - £,€ - 28,€, C, = 1/c>1 - 52/46

and C3 =1 - Ellée:

2 2 e =112 +, 12
Re ACa,w) 2¢, 116 2+ ¢, o IB+cycliial 2 + eshai

Now ¢ > 0 may be chosen so that

¢, =¢C

2, ;2.% _
1 M@+ ) - [c, +(c, +E)°1/2 - 28.e

2~ fo

where C, = poA/(l + ) - 1/p1 - 2515. Thus by hypothesis (after some

4
manipulation) Cl’ C3 > 0. Hence A is coercive on U x U and the Lax-Milgram

theorem holds therefore completing the proof.

Theorem 3.1 may also be extended to apply to the approximation.
First note that MK.(Th) with || - ]Iland ]M;I(Th) ‘with || - "0 are closed sub-
spaces of H and LZ(Q). Furthermore if we extend {g:} € SN to {gg} € S by
defining gﬁ =0 VY n >N then SN with || - “S is a closed subspace of S.
Thus by repeating the proof for the finite dimensional case we have:
Theorem 3.2. Suppose the hypothesis of Theorem 3.1 holds. Then there exist
a unique w = (¢h,ph,{a;N },{b:N}) € Uh =M£’_(Th) x]Ml;l(Th) x SN X SN satis-

fying (2.2) with || u ||, <¢ ([lta} Hlg + Iltb] Mg ).
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4. Convergence of the Approximation

We now prove convergence of the approximation (2.2) to the solution
of (2.1) under an hypothesis that the solution and the data is "regular".

N N .
Set v, = (wh,qh,{an},{ﬂn}) € Uh and define

N N

sl gl ' 2 320"
F,(v.) =p I (a,w)+p I s (b,)
N'h Fl n=0 n n h Pz a=0 O n h
N
-N - =N
- nfo n(n) (a @ + hn Bn)
. =2 - -2 — -1 -
AN(uh,v ) = [ [ - dwe Py, (p‘7¢h +c I_J p). * Y‘b + PPy
Q
- .- N N =N
+ (I_J°\z¢h)qh + dwé, q,] - (2/d;) T =n B (a ,¢h) + I n(n)a a
n=1 n=0
- a]'B @Y, 8,) - (2/dy) P s @30+ I a@bt VA
: 1 0’¢h 2 % n’¢h n(n n Bn
n=1 n=0
12(8N¢)+ I; sl gl 52 2, +N
0’ h =0 [pl'\ n n(an ’wh) + prz B (bn s h)]

Theorem 4.l. Suppose the hypothesis of Theorem 3.1 holds, T, is a regular

h

family of triangulatioms, £ > 1, m >0, £ > 0, u and u_ are solutions to (2.1)

h
and (2.2) with u € (HN H (Q)) x Hm+1(9) X Sn x Sn and {a:},{b;} € Sn.

Then there exists a positive constant C such that,
¥4 m+1 -1 +
“ u = uh ”u i C[h I¢|£+1’Q + h Iplm.l’n + N (”{an}“S)L

- + -
* gty + I + T )
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Proof. Let e = u f u, . Then A(e,e) = A(e,u-vh) + A(e,vh-uh) \f AL e U

since A is sesquilinear. But A is continuous and coercive on U x U

(and Uh X Uh); u and u, are solutions to (2.1) and (2.2); and AN(uh,vh) =
A(uh,vh). Thus

“ u - uh “U = C[” u - Vh ”U + lF(uh-Vh) = FN(uh - Vh)I/” u - uh “u]
Now

1_ 2 2
F(v,) - Fy(v) = I [oGB(a,w)'l'p B(b,w)]
h h T h I'2 h

Therefore by using (3.1), noting that V’{gn} e st

and i = 1,2

. am|Bie )] <8 £ a@) [Bam )l
n=N+1 n°n’"h =0 I n n’"h

and applying Lemma 2.2 we get that
: -1 -, -
LOAER MURTIEEN s A XU RO %
We obtain the desired result after choosing vh'so that Lemmas 2.3 and 2.4

hold.

As might be expected we may not approximate (2.1) with arbitrary
values for £, m and N without possibly sacrificing accuracy. A judicious

choice may be realized by observation of the estimate “ u - uy ”U'

-L/n

Corollary 4.1. Suppose that m > £-1 and N > h . Then

= O(hl)

fu=u

o lu
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Remark 4.1. Corollary 4.1 allows one to determine how many boundary
terms must be included in the approximation depending on the regularity
of the boundary data. In many acoustics problems we find that N =1

implying that N =2 (l/h).
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4.1 Numerical Example

We consider a problem which is not explicitly covered by our theory
but nevertheless can be analyzed in a similar manner. Let Q = {(x,y):

0<x<1l,0<y<0.5} c(x,y) =1. V (x,y) € ! and define for 0 <y <0.5

p(x,y) = 1. 0 <x<0.5

0.5 0.5 <x < l.
Also let e define a unit vector in the x-direction, set

U= —0.25<-=x 0ix<0.5

-~

0.5 e 0.5 < x < 1.
~X

w = 1. ,a;=1. ,a:=0. v n_>_1,b;=0 VniOandappendto (1.1)

the following jump condition for x = 0.5 , 0 <y < 0.5.

lim ([p(;-e,y)ch(;—e,y) + ¢ 2pGe,y)UG-e,)] - gx)

e +0

= lim < [p(§+€,y)Y¢(§+€,y) + c-zp(;ﬂf,y)g(;:%,y)] . gx)

e >0

- +
We then have a classical problem which has as a solution for ¢, {an} and {bn}:

dp(x,y) = exp (- 4/3 ix) + agy exp (4/5 {x), 0 < x <0.5
+ .
b0 exp (- 2 «[x-1]), 0.5 < x < 1.

ay T 0.161 - 0.219 L ; a_ =0 ¥ new

b; > -0.1276 - 1.3272 4 ; b: =0 VaeN

The pressure may be calculated using (l.lb) and the jump conditionm.
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Remark 4.3. This solution does not satisfy the hypothesis of Theorem 4.1.

However the same convergence rates will hold for our approximation as long
as the graph {(0.5,y): O Ly f.O.S} does not intersect the interior of any
element in Th' Otherwise, as is well known, we would have to use discontinuous
interpolating functions for the approximation.

Three numerical experiments were performed using uniform rectangular
elements. We denote a uniform grid with I elements in the x dirgction and
J elements in the y direcgion as a "J x I grid".

The three cases we consider are:

~1 . .
¢ (¢h,ph) € D& X l& with 5 x 10, 10 x 20 and 20 x 40 grids.
2) (¢h,ph) € I& x Bﬁlwith 5 x 14, 10 x 21 and 20 x 41 grids.
(3) (¢h,ph) € D& X l& with 5 x 10, 10 x 20 and 20 x 40 grids.

The error in pressure is tabulated in Table 1 for each of the

experiments. Experiment 1l yielded the desired convergence rate (rate

14

2)

while the other two experiments did not (rate = 1) as expected.
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